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ABSTRACT  
The proposed study has formulated six optimization programming problems with non linearity. The model 

problems have considered the issue of minimizing the risk of bacterial growth and spread among different aged 

plants.  The observational data with agricultural laboratories in Andhra Pradesh have been considered to explore 

the influencing parameters of the optimization problems. All the formulations on the objective functions as well 

as the constraints are based on the early works of the researchers in the case of Trivariate stochastic modeling of 

bacterial growth and spread. This study has applied on different species as well as at different stages of growth 

(age groups) of plants [2]. It has a very good scope for exploring the intensity indicators of bacterial spread so as 

an effective crop management can be done with agricultural care takers.  

Keywords: Optimal Programming Problems, Bacterial Disease Management, Trivariate Stochastic Processes, 

Decision Support Systems.  

 

I. INTRODUCTION 
Bacterial diseases among plants are more 

vulnerable and they used to act as barricades on 

healthy growth of plants.  Onset and spread of 

various bacterial diseases on the host plant are 

purely stochastic in nature. The time of onset, the 

intensity of bacteria accumulation, the frequency of 

transition from one plant to other plant, etc are of 

great importance to understand the growth 

dynamics of the bacteria or fungus. The crops may 

experience wide damage due to explosive growth 

of bacteria. Assessing the severity of the disease 

through mathematical models will help to acquire 

the suitable indicators. These devices will identify 

the intensity spots on the overall growth.  Statistical 

measures like average levels of bacterial 

accumulation in different aged plants at the stages 

of Nursery, Plantation and Yielding are varying.   

The accumulation and spreading behaviour of 

parasite on the plant are influenced by the factors 

like age of the plant, the plant species, the growing 

environment, the type of agriculture method, etc.      

The strategies on the prevention and 

control of the bacterial disease spread of plants are 

directly linked with how the above factors 

contributing the average size and variability of 

settled and migrated bacteria on the plant.  Hence, 

assessing the intensity of disease through modeling 

is the core area of research which has attracted the 

attention of many researchers. The success of 

disease management is mostly related to 

understanding the dynamics of bacterial spread 

through internal growth, through the migration 

from and to with other plants and the loss or death 

of bacteria. Due to many explained and 

unexplained reasons the influencing factors of 

bacteria spread among plants are uncertain. Thus 

probabilistic tools need to be used to study the 

dynamics of bacterial transmission.   

This study has focused on development of 

optimal programming problems with the objectives 

of minimizing the average accumulation of bacteria 

in three stages of plants namely Nursery, Plantation 

and Yielding. Further, the models have also 

developed the optimization programming problems 

with the objectives of maximizing the volatility 

among the growth and spread of bacteria in all the 

above mentioned stages of plants.   The prime 

decision variables with these problems are the rates 

of arrival or onset of fresh bacteria to different 

staged (aged) plants, rates of growth of bacteria 

within each stage, rates of death of bacteria in each 

stage, migration rates of bacteria from different 

stages, transition rates of bacteria from one stage to 

other stages, etc.  Exploring of these parameters 

will help the crop management people for getting 

the efficient measurements on the bacterial 

intensities so as suitable intervention or treatment 

protocols can be implemented.   

Xu and Ridout (2000) have demonstrated 

the usage of stochastic simulation models for better 

understanding of initial epidemic conditions, 

especially the spatial pattern of initially infected 

plants and the relationships of spatio-temporal 

statistics with underlying biological and physical 

factors. Tirupathi Rao et al., (2010-2014) have 

developed several stochastic and optimization 

programming models for drug administration 

pertaining to cancer chemotherapy.  Madhavi et al. 

(2013) have proposed some more optimization 

programming problem with stochastic back ground 

on optimal drug administration for cancer 
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chemotherapy. All the above studies have mostly 

highlighted on extraction of crucial decision 

parameters such as drug dosage levels, drug 

administrative period, drug vacation period, 

number of drug cycles and frequency of drug 

administration within a cycle, etc. during 

chemotherapy. The researchers got the motivation 

from the above mentioned works for proposing the 

suitable decision support systems for management 

of plant diseases.   

 

II. OPTIMIZATION MODELING 
The current study proposed about six non-

linear programming problems for optimal control 

of bacterial spread over the plants at different ages 

and species.  For formulating the objective 

functions and the subjective constraints, the 

researchers have considered their own developed 

Trivariate stochastic models for growth and spread 

of bacteria [2].  The objectives of the said problems 

are formulated in two dimensions such as 

minimizing the average size of bacteria and 

maximizing the variability in bacterial size hosted 

on the plants at different stages namely Nursery, 

Plantation and Yielding. The prime objectives of 

these studies are to derive the decision parameters 

of the programming problems like regulating rates 

of bacterial growth, rate of transitions from one 

stage to other and rate of bacterial loss. The 

subjective constraints are also formulated based on 

the consideration of lowering the risky levels of 

bacterial growth. The applicability robustness of 

the developed models are observed with the data 

sets obtained from the laboratories of plant 

pathology situated in Andhra Pradesh.  

 

2.1. Notations and Terminology:  

n: number of bacterial units in stage-I (nursery 

stage plants) at time ‘t’; 

m: number of bacterial units in stage-II 

(transplantation stage plants) at time ‘t’;  

k: number of bacterial units in stage-III (yielding 

stage plants) at time ‘t’; Here one unit denotes the 

number of bacteria in a square area (mm
2
);   

1 2 3, and   : the rates of growth of bacteria due 

to immigration from external means per unit time 

to stage-I, stage-II and stage-III plants respectively;  

1 2 3, and   : the rates of internal growth (birth) 

of bacteria per unit time in  stage-I, stage-II and 

stage-III plants respectively;  

1 2  and  : the rates of transition of bacteria per 

unit time from stage-I to stage-II plants and stage-II 

to stage-III plants respectively;  

1 2 3,  and   : the rates of emigration of bacteria 

per unit time from stage-I, stage-II and stage-III 

plants to the other sites of plants respectively;  

1 1 3,  and   : the rates of loss (death) of bacteria 

per unit time in stage-I, stage-II and stage-III plants 

respectively.   
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N0, M0, K0: Initial sizes of bacteria at nursery, 

plantation, yielding stages of plants respectively 

C0, D0, E0, F0, G0, H0 : Integral Constants while 

solving the differential equations 

C1, C2, C3 : Upper limits of average number of 

bacterial  units in stages-I, II and III plants 

respectively at a point of time ‘t’;  

C4, C5, C6 : Upper limits of variance of bacterial  

units in stage-I, II and III plants respectively at a 

point of time ‘t’;  

 

III. STOCHASTIC PROGRAMMING 

PROBLEMS 
In this section, six programming problems are 

formulated. They are  

1. Optimal Programming for Minimizing the 

Expected Bacteria size in Stage-I plants  

2. Optimal Programming for Minimizing the 

Expected Bacteria size in Stage-II plants 

3. Optimal Programming for Minimizing the 

Expected Bacteria size in Stage-III plants 

4. Optimal Programming for Maximizing the 

Variance size of Bacteria in Stage-I plants 

5. Optimal Programming for Maximizing the 

Variance size of Bacteria in Stage-II plants 

6. Optimal Programming for Maximizing the 

Variance size of Bacteria in Stage-III plants 

 

3.1. Optimal Programming for Minimizing the 

Expected Bacteria size in Stage-I plants 

This programming problem is formulated 

with the objective of minimizing the average 

number of bacterial units in stage-I plants with the 

constraints on average number of bacterial units 

and also on the variance of bacterial units in 

different stages of plants.  

In order to achieve the above objective, 

the growth of bacterial units size shall not beyond 

the warning limits.  Hence, the average number of 

bacterial units in stage-I plants at a point of time ‘t’ 

should not be more than some threshold limits say 

C1, C2 and C3.  Similarly with the variances of 

bacterial units in stage-I, stage-II and stage-III 

plants at a point of time ‘t’ should not be more than 

some threshold limits say C4, C5 and  C6.  

Then the programming problem is  
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3.1.7 

And α1≥0, α2≥0, α3≥0β1≥0, β2≥0, β3≥0, τ1≥0, τ2≥0, ε1≥0, ε2≥0, ε3≥0, δ1≥0, δ2≥0 and δ3≥0  3.1.8  
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Following the similar procedure mentioned in the section 3.1 the other programming problems shall be.  

 

3.2. Optimal Programming for Minimizing the 

Expected Bacteria size in Stage-II Plants  
This programming problem is formulated 

with the objective of minimizing the average 

number of bacterial units in stage-II plants with the 

constraints of average number of bacterial units in 

different stages of plants and variance of number of 

bacterial units in different stages plants.  
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All the subjective constraints of this problem are same as from 3.1.2 to 3.1.7 and 3.1.8.  

 

3.3. Optimal Programming for Minimizing the 

Expected Bacteria size in Stage-III Plants  
This programming problem is formulated 

with the objective of minimizing the average 

number of bacterial units in stage-III plants with 

the constraints of average number of bacterial units 

in different stages of plants and variance of number 

of bacterial units in different stages plants.  
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All the subjective constraints of this problem are same as from 3.1.2 to 3.1.7 and 3.1.8. 

 

3.4. Optimal Programming for Maximizing the 

Variance size Bacteria in Stage-I plants 

This programming problem is formulated 

with the objective of maximizing the variance 

number of bacterial units in stage-I plants with the 

constraints of average number of bacterial units in 

different stages and variance of number of 

bacterial units in different stages.  
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All the subjective constraints of this problem are same as from 3.1.2 to 3.1.7 and 3.1.8.  

 

3.5. Optimal Programming for Maximizing 

variance of size of Bacteria in stage-II plants 
This programming problem is formulated 

with the objective of maximizing the variance of 

number of bacterial units in stage-II plants with the 

constraints of average number of bacterial units in 

different stages and variance of number of 

bacterial units in different stages.  
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All the subjective constraints of this problem are same as from 3.1.2 to 3.1.7 and 3.1.8. 

 

3.6. Optimal Programming for Maximizing 

variance of size of Bacteria in stage-II plants 
This programming problem is formulated 

with the objective of maximizing the variance of 

number of bacterial units in stage-III plants with 

the constraints of average number of bacterial units 

in different stages and variance of number of 

bacterial units in different stages.  
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All the subjective constraints of this problem are same as from 3.1.2 to 3.1.7 and 3.1.8. 

 

IV. NUMERICAL ILLUSTRATION 
In order to understand the behaviour of 

optimization problems, data set from agricultural 

laboratories situated in Andhra Pradesh state were 

considered. Decision parameters like growth, loss 

and transition rates of bacterial units among three 

stages of plants are obtained at different values of 

initial number of bacterial units at stage-I (No), 

initial number of bacterial units at stage-II (Mo), 

initial number of bacterial units at stage-III (Ko), 

upper limit of variance of bacterial units at stage-I 

(C4), upper limit of variance of bacterial units at 

stage-II (C5), upper limit of variance of bacterial 

units at stage-II (C6) and time. All the obtained 

values of 1; 1; 1; 2; 2; 2; 3; 3; 1; 1; 2; 2; 

3; 3; Z1; Z2; Z3; Z4; Z5; Z6 using LINGO 14.0 are 

presented in tables from 4.1 to 4.6. 
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Table-4.1: Values of  1; 1; 1; 2; 2; 2; 3; 3; 1; 1; 2; 2; 3; 3; Z1 for changing values N0; C4; t and fixed 

values of other parameters: 

 
 

Table-4.2: Values of  1; 1; 1; 2; 2; 2; 3; 3; 1; 1; 2; 2; 3; 3; Z2 for changing values M0; C5; t and fixed 

values of other parameters: 

 
 

Table-4.3: Values of  1; 1; 1; 2; 2; 2; 3; 3; 1; 1; 2; 2; 3; 3;  Z3 for changing values K0; C6; t and fixed 

values of other parameters: 
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Table-4.4: Values of  1; 1; 1; 2; 2; 2; 3; 3; 1; 1; 2; 2; 3; 3; Z4 for changing values N0; C4; t and fixed 

values of other parameters: 

 
 

Table-4.5: Values of  1; 1; 1; 2; 2; 2; 3; 3; 1; 1; 2; 2; 3; 3; Z5 for changing values M0; C5; t and fixed 

values of other parameters: 

 
 

Table-4.6: Values of  1; 1; 1; 2; 2; 2; 3; 3; 1; 1; 2; 2; 3; 3; Z6 for changing values K0; C6; t and fixed 

values of other parameters: 
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V. DISCUSSION AND ANALYSIS 
5.1. Observation of Optimal size of Bacterial 

units (Z1) in Stage-I Plants with varying values 

of No, C4, t: 

From table-4.1, it is observed that both 2 

and 2 are equal and increasing functions; 1, 3, 

3, and 1 are invariant; and  1, 1, 2 are 

decreasing functions of No; the group of rates (1, 

2, 3 and 3) are less than the group of rates (1, 1 

and 2). As a result, the optimal (minimum) size of 

expected bacterial units in stage-I plants (Z1) is a 

decreasing function of initial number of bacterial 

units (N0) in stage-I.   Further,  with respect to 

upper limit on the variance of bacterial units (C4), it 

is observed that both 2 and 2 are equal and 

increasing functions; 1, 3, 3, and 1 are 

invariant; and 1, 1, 2 are decreasing functions; 

the group of rates (1, 2, 3 and 3) are less than 

the group of rates (1, 1 and 2). As a result, the 

optimal (minimum) size of expected bacterial units 

(Z1) is increasing function of C4 in stage-I plants.    

It is also observed that, with the increased time 2, 

2 are equal and increasing functions;  1, 3 and 3 

are invariant; 1, 1, 2 are decreasing functions; 1 

is increasing function of time;  group of rates (1, 

2, 3 and 3) are less than the group of rates (1, 1 

and 2). As a result, the optimal (minimum) size of 

expected bacterial units (Z1) is a decreasing 

function of time.  

 

5.2. Observation of Optimal size of Bacterial 

units (Z2) in Stage-II plants with varying values 

of Mo, C5, t:  

From table-4.2, it is observed that both 1 

and 2 are equal; also 1 is greater than all other 

rates except 2; all rates are invariant.  As a result, 

the optimal (minimum) size of expected bacterial 

units (Z2) on stage plants is an increasing function 

of initial number of bacterial units (M0) in stage-II 

plants when other parameters are constants. All 

birth, death and transition rates of bacteria in stage-

I plants are not influenced by (M0). Hence it may 

conclude that as the initial number of bacterial 

units in stage-II plants is increasing, the expected 

size of these bacteria is also increasing as the birth 

and death rates are constant.  With respect to the 

upper limit of variance of bacteria on stage-II 

plants, it is observed that both 1 and 2 are equal; 

1 is greater than all other rates except 2; all the 

rest of the rates are invariant.  As a result, the 

optimal (minimum) size of expected bacterial units 

(Z2) is an increasing function in stage-II plants 

when other parameters are constants. All birth, 

death and transition rates of bacteria in stage-I are 

not influenced by C5. Hence it may conclude that as 

the variance of bacterial units in stage-II plants is 

increasing, the expected size of bacteria on stage-II 

plants is also increasing as the birth and death rates 

are constant.   Regarding the change of time 

duration, it is observed that both 1 and 2 are 

equal; 1 is greater than all other rates except 2; 3, 

1 and 2 are decreasing functions; 2 is increasing 

function; all the remaining rates are invariant.  As a 

result, the optimal (minimum) size of expected 

bacterial units (Z2) is a decreasing function of time 

when other parameters are constants. Further, birth 

rate (1) of bacteria in stage-I plants is decreasing 

function of time where as birth rate (2) in stage-II 

plants  and arrival rate (3) in stage-III plants are 

increasing and decreasing functions of time 

respectively. Hence it may conclude that as the 

time elapsed, the expected size of the bacteria in 

stage-II plants is decreasing.  

 

5.3. Observation of Optimal size of Bacterial 

units (Z3) in Stage-III plants with varying values 

of Ko, C6, t:  

From table-4.3, it is observed that 1, 2 

and 3 are increasing functions; 1 is invariant; 1, 

2, 2, 3, 3 and 3 are decreasing functions of (Ko); 

As a result, the optimal (minimum) size of 

expected bacterial units (Z3) is a decreasing 

function of initial number of bacterial units (K0) in 

stage-III plants. Regarding with upper limit on the 

variance of stage-III plants(C6), 1, 2 and 3 are 

increasing functions; also 1 is invariant; 1, 2, 2, 

3, 3 and 3  are decreasing functions.  As a result, 

the optimal (minimum) size of expected bacterial 

units (Z3) is an increasing function of C6 .  Hence it 

may conclude that as the variance number of 

bacterial units in stage-III plants is increasing, the 

expected size of these bacteria is also increasing.  

With respect to time period observation, 1, 1, 1, 

3, 3  and 3 are decreasing functions; 2, 2, 2,  

and 3 are increasing functions. As a result, the 

optimal (minimum) size of expected bacterial units 

(Z3) is a decreasing function of time period when 

other parameters are constants. Hence it may 

conclude that as the time elapsed, the expected size 

of bacteria in stage-III plants is decreasing.  

 

5.4. Observation of Optimal Variance of 

Bacterial units (Z4) in Stage-I Plants with 

varying values of No, C4, t: 

From table-4.4, with respect to the initial 

size of bacteria on the stage-I plant, it is observed 

that all the birth, death and transition rates are 

invariant; the group of rates (1, 2, 3 and 3) are 

less than the group of rates (1, and 2). As a result, 

the optimal (maximum) size of variance of 

bacterial units (Z4) in stage-I plants is a decreasing 

function of N0. Hence it may conclude that as the 

initial number of bacterial units in stage-I plants is 

increasing, the volatility of these bacteria is 
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decreasing as the birth and death rates are nullified 

in stage-I plants.   Regarding the change in upper 

limit on variance of bacterial units (C4) in stage-I 

plants, the group of rates (1, 2, 3, 3) are less 

than the group of rates (1, 1, 2, 2); all the rates 

are invariant. As a result, the optimal (maximum) 

size of variance of bacterial units (Z4) in stage-I 

plants is a decreasing function of upper limit of 

variance of bacterial units (C4) in stage-I plants 

when other parameters are constants. Hence it may 

conclude that as the upper limit of variance of 

bacterial units (C4) in stage-I plants is increasing, 

the volatility of these bacteria is decreasing  due to 

nullified arrival, birth and death rates in stage-I 

plants.   With respect to increase in the time 

duration the group of rates (1, 2, 3, 3) are less 

than (1, 1, 2, 2) as well as the group of rates (1, 

2, 2, 2); are decreasing functions. As a result, the 

optimal (maximum) size of variance of bacterial 

units (Z4) in stage-I plants is a decreasing function 

of time when other parameters are constants. Hence 

it may conclude that as the time is elapsed, the 

volatility of these bacteria is decreasing due to 

nullified arrival, birth and death rates in stage-I.  

 

5.5. Observation of Optimal Variance of 

Bacterial units (Z5) in Stage-II plants with 

varying values of Mo, C5, t:  

From table-4.5, regarding the increased 

values of initial number of bacteria in stage-II 

plants, the group of rates (1, 2, 3, 3) are less 

than the group of rates (1, 1, 2, 2); 1, 2 are 

decreasing functions; 2, 2 are increasing 

functions. As a result, the optimal (maximum) size 

of variance of bacterial units (Z5) in stage-II plants 

is decreasing function of M0 when other parameters 

are constants. Hence it may conclude that for the 

increasing initial number of bacterial units in stage-

II plants there will be decrease in the volatility of 

bacteria in stage-II plants.  With related to increase 

in upper limit of variance of bacterial units in 

stage-II plants (C5), it is observed that the group of 

rates (1, 2, 3, 3) are less than the group of rates 

(1, 2, 2); 1, 2 are decreasing functions; 2, 2 are 

increasing functions.  As a result, the optimal 

(maximum) size of variance of bacterial units (Z5) 

in stage-II plants is decreasing function of C5 when 

other parameters are constants. Hence it may 

conclude that the volatility of bacteria on stage –II 

plants is decreasing for the increasing C5. Further, 

with regarding to time period of study, it is 

observed that the group of rates (1, 2, 3, 3) are 

less than the group of rates (1, 2, 2); 1, 2 are 

decreasing functions; 2, 2 are increasing 

functions.  As a result, the optimal (maximum) size 

of variance of bacterial units (Z5) in stage-II plants 

is decreasing function of time when other 

parameters are constants. Hence it may conclude 

that for the increasing time, the volatility of these 

bacteria is decreasing.   

 

5.6. Observation of Optimal Variance of 

Bacterial units (Z6) in Stage-III plants with 

varying values of Ko, C6, t:  

From table-4.6, with respect to the 

increased value of initial number of bacterial units 

on the stage-III plants (K0), it is observed that the 

group of rates (1, 2, 3, 3, 1) are less than the 

group of rates (1, 2, 2); all rates are invariant. As 

a result, the optimal (maximum) size of variance of 

bacterial units (Z6) in stage-III plants is decreasing 

function of K0 when other parameters are constants. 

Hence it may conclude that for the increasing K0, 

the volatility of bacteria is decreasing.  Regarding 

the change in upper limit on the variance of 

bacterial units on stage-III plants (C6), the group of 

rates (1, 2, 3, 3, 1) are less than (1, 2, 2); all 

rates are invariant. As a result, the optimal 

(maximum) size of variance of bacterial units (Z6) 

in stage-III plants is decreasing function of C6 

when other parameters are constants. Hence it may 

conclude that for the increasing C6, the volatility of 

the bacteria is decreasing.  Regarding the change of 

time duration, (1, 2, 3, 3, 1, 2) are less than (1, 

2); 1, 1, 2 are decreasing functions 1, 2, 3, 3 

are increasing functions.  As a result, the optimal 

(maximum) size of variance of bacterial units (Z6) 

in stage-III plants is decreasing function of time 

period when other parameters are constants.  
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